If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2w^2+6w-1080=0
a = 2; b = 6; c = -1080;
Δ = b2-4ac
Δ = 62-4·2·(-1080)
Δ = 8676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{8676}=\sqrt{36*241}=\sqrt{36}*\sqrt{241}=6\sqrt{241}$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6\sqrt{241}}{2*2}=\frac{-6-6\sqrt{241}}{4} $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6\sqrt{241}}{2*2}=\frac{-6+6\sqrt{241}}{4} $
| (3x+5)=53 | | (3x-5)=53 | | 2(2x+7)+2(x-10)=3x+1 | | m+5+3m/2=2m | | 10.8=3y | | 4(2x-3)+5(3x-4)=34 | | -9+12=m-5 | | 4(v-1)=3v+1-5(-3v-1) | | 4(v-1)=3v+1-5(-3v-1 | | 4.2+10m=7.89 | | 8x-82=12x+58 | | 4x²=7x | | 6x-12=7x+20 | | 69=3(x^2-2) | | (2x+12)+(3x-17)=105 | | 4(4m-3)-(m-5)=-51 | | 3.2+10m=6.89 | | 15n+2=12n | | 6-5-5b=-109 | | 4x+14+2x-20=3x+1 | | 6x/25=⅗ | | 2n+21=3n+19 | | 60x+30x=180 | | X-0.5x=-4.5+0.75 | | 2(u-7)=16 | | 17+5k=73 | | -8v+3(v-6)=17 | | (3x-17)+(2x+12)=105 | | b+(b+45)+90+(2b-90)3/2b=540 | | -14n+6=-13n-9 | | (23+3x)=(76-9x) | | 3(x-2)+2=2x-2 |